1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use crate::{repr::Repr, RBig, Relaxed};
use dashu_base::{DivRem, Sign, UnsignedAbs};
use dashu_int::IBig;

impl Repr {
    #[inline]
    pub fn split_at_point(self) -> (IBig, Self) {
        let (trunc, r) = (&self.numerator).div_rem(&self.denominator);

        let fract = if r.is_zero() {
            Repr::zero()
        } else {
            // no need to reduce here
            Repr {
                numerator: r,
                denominator: self.denominator,
            }
        };
        (trunc, fract)
    }

    #[inline]
    pub fn ceil(&self) -> IBig {
        let (mut q, r) = (&self.numerator).div_rem(&self.denominator);
        if r > IBig::ZERO {
            q += IBig::ONE;
        }
        q
    }

    #[inline]
    pub fn floor(&self) -> IBig {
        let (mut q, r) = (&self.numerator).div_rem(&self.denominator);
        if r < IBig::ZERO {
            q -= IBig::ONE;
        }
        q
    }

    #[inline]
    pub fn trunc(&self) -> IBig {
        (&self.numerator) / (&self.denominator)
    }

    #[inline]
    pub fn fract(&self) -> Self {
        let r = (&self.numerator) % (&self.denominator);
        if r.is_zero() {
            Repr::zero()
        } else {
            Repr {
                numerator: r,
                denominator: self.denominator.clone(),
            }
        }
    }

    #[inline]
    pub fn round(&self) -> IBig {
        let (mut q, r) = (&self.numerator).div_rem(&self.denominator);
        if (r.unsigned_abs() << 1) >= self.denominator {
            match self.numerator.sign() {
                Sign::Positive => q += IBig::ONE,
                Sign::Negative => q -= IBig::ONE,
            }
        }
        q
    }
}

impl RBig {
    /// Split the rational number into integral and fractional parts (split at the radix point).
    ///
    /// It's return is equivalent to `(self.trunc(), self.fract())`
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// # use dashu_ratio::RBig;
    /// assert_eq!(RBig::ONE.split_at_point(), (IBig::ONE, RBig::ZERO));
    ///
    /// let a = RBig::from_parts(22.into(), 7u8.into());
    /// let (trunc, fract) = a.split_at_point();
    /// assert_eq!(trunc, IBig::from(3));
    /// assert_eq!(fract, RBig::from_parts(1.into(), 7u8.into()));
    /// ```
    #[inline]
    pub fn split_at_point(self) -> (IBig, Self) {
        let (trunc, fract) = self.0.split_at_point();
        (trunc, Self(fract))
    }

    /// Compute the least integer that is greater than or equal to this number.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// # use dashu_ratio::RBig;
    /// assert_eq!(RBig::ONE.ceil(), IBig::ONE);
    ///
    /// let a = RBig::from_parts(22.into(), 7u8.into());
    /// assert_eq!(a.ceil(), IBig::from(4));
    /// ```
    #[inline]
    pub fn ceil(&self) -> IBig {
        self.0.ceil()
    }

    /// Compute the greatest integer that is less than or equal to this number.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// # use dashu_ratio::RBig;
    /// assert_eq!(RBig::ONE.floor(), IBig::ONE);
    ///
    /// let a = RBig::from_parts(22.into(), 7u8.into());
    /// assert_eq!(a.floor(), IBig::from(3));
    /// ```
    #[inline]
    pub fn floor(&self) -> IBig {
        self.0.floor()
    }

    /// Compute the integer that closest to this number.
    ///
    /// It will return the one farther from zero when the number has the 1/2 as its fractional part.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// # use dashu_ratio::RBig;
    /// assert_eq!(RBig::ONE.round(), IBig::ONE);
    ///
    /// let a = RBig::from_parts(22.into(), 7u8.into());
    /// assert_eq!(a.round(), IBig::from(3));
    /// ```
    #[inline]
    pub fn round(&self) -> IBig {
        self.0.round()
    }

    /// Returns the integral part of the rational number.
    ///
    /// It's guaranteed that `self == self.trunc() + self.fract()`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// # use dashu_ratio::RBig;
    /// assert_eq!(RBig::ONE.trunc(), IBig::ONE);
    ///
    /// let a = RBig::from_parts(22.into(), 7u8.into());
    /// assert_eq!(a.trunc(), IBig::from(3));
    /// ```
    #[inline]
    pub fn trunc(&self) -> IBig {
        self.0.trunc()
    }

    /// Returns the fractional part of the rational number
    ///
    /// It's guaranteed that `self == self.trunc() + self.fract()`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// # use dashu_ratio::RBig;
    /// assert_eq!(RBig::ONE.fract(), RBig::ZERO);
    ///
    /// let a = RBig::from_parts(22.into(), 7u8.into());
    /// assert_eq!(a.fract(), RBig::from_parts(1.into(), 7u8.into()));
    /// ```
    #[inline]
    pub fn fract(&self) -> Self {
        Self(self.0.fract())
    }
}

impl Relaxed {
    /// Split the rational number into integral and fractional parts (split at the radix point).
    ///
    /// See [RBig::split_at_point] for details.
    #[inline]
    pub fn split_at_point(self) -> (IBig, Self) {
        let (trunc, fract) = self.0.split_at_point();
        (trunc, Self(fract))
    }

    /// Compute the smallest integer that is greater than this number.
    ///
    /// See [RBig::ceil] for details.
    #[inline]
    pub fn ceil(&self) -> IBig {
        self.0.ceil()
    }

    /// Compute the largest integer that is less than or equal to this number.
    ///
    /// See [RBig::floor] for details.
    #[inline]
    pub fn floor(&self) -> IBig {
        self.0.floor()
    }

    /// Compute the integer that closest to this number.
    ///
    /// See [RBig::round] for details.
    #[inline]
    pub fn round(&self) -> IBig {
        self.0.round()
    }

    /// Returns the integral part of the rational number.
    ///
    /// See [RBig::trunc] for details.
    #[inline]
    pub fn trunc(&self) -> IBig {
        self.0.trunc()
    }

    /// Returns the fractional part of the rational number
    ///
    /// See [RBig::fract] for details.
    #[inline]
    pub fn fract(&self) -> Self {
        Self(self.0.fract())
    }
}