1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use crate::{
    rbig::{RBig, Relaxed},
    repr::Repr,
};
use dashu_base::{Approximation, ConversionError, DivRem, Gcd};
use dashu_float::{
    round::{ErrorBounds, Round, Rounded},
    Context, FBig, Repr as FBigRepr,
};
use dashu_int::{UBig, Word};

// TODO(v0.5): make this fallible, only succeed when the conversion is exact.
impl<R: Round, const B: Word> From<Repr> for FBig<R, B> {
    #[inline]
    fn from(v: Repr) -> Self {
        let Repr {
            numerator,
            denominator,
        } = v;
        FBig::from(numerator) / FBig::from(denominator)
    }
}

// TODO(v0.5): substitute this function
#[allow(dead_code)]
fn fbig_try_from_rbig<R: Round, const B: Word>(v: Repr) -> Result<FBig<R, B>, ConversionError> {
    let Repr {
        numerator,
        denominator,
    } = v;

    let float_den = FBig::from(denominator);
    let float_num = FBig::from(numerator);

    // TODO: specialize for RBig (gcd is unnecessary)
    if !float_num
        .repr()
        .significand()
        .gcd(float_den.repr().significand())
        .is_one()
    {
        return Err(ConversionError::LossOfPrecision);
    }

    Ok(float_den / float_num)
}

impl<const B: Word> TryFrom<FBigRepr<B>> for Repr {
    type Error = ConversionError;
    fn try_from(value: FBigRepr<B>) -> Result<Self, Self::Error> {
        if value.is_infinite() {
            Err(ConversionError::OutOfBounds)
        } else {
            let (signif, exp) = value.into_parts();
            let (numerator, denominator) = if exp >= 0 {
                (signif * UBig::from_word(B).pow(exp as usize), UBig::ONE)
            } else {
                (signif, UBig::from_word(B).pow((-exp) as usize))
            };
            Ok(Repr {
                numerator,
                denominator,
            })
        }
    }
}

impl<R: Round, const B: Word> TryFrom<FBig<R, B>> for Repr {
    type Error = ConversionError;
    #[inline]
    fn try_from(value: FBig<R, B>) -> Result<Self, Self::Error> {
        value.into_repr().try_into()
    }
}

macro_rules! forward_conversion_to_repr {
    ($t:ident, $reduce:ident) => {
        impl<R: Round, const B: Word> From<$t> for FBig<R, B> {
            #[inline]
            fn from(v: $t) -> Self {
                v.0.into()
            }
        }

        impl<const B: Word> TryFrom<FBigRepr<B>> for $t {
            type Error = ConversionError;
            #[inline]
            fn try_from(value: FBigRepr<B>) -> Result<Self, Self::Error> {
                Repr::try_from(value).map(|repr| $t(repr.$reduce()))
            }
        }

        impl<R: Round, const B: Word> TryFrom<FBig<R, B>> for $t {
            type Error = ConversionError;
            #[inline]
            fn try_from(value: FBig<R, B>) -> Result<Self, Self::Error> {
                Repr::try_from(value).map(|repr| $t(repr.$reduce()))
            }
        }
    };
}
forward_conversion_to_repr!(RBig, reduce);
forward_conversion_to_repr!(Relaxed, reduce2);

impl Repr {
    // There are some cases where the result is exactly representable by a FBig
    // without loss of significance (it's an integer or its denominator is a power of B).
    // However, it's better to explicitly prohibit it because it's still failing
    // in other cases and a method that panics occasionally is not good.
    fn to_float<R: Round, const B: Word>(&self, precision: usize) -> Rounded<FBig<R, B>> {
        assert!(precision > 0);

        if self.numerator.is_zero() {
            return FBig::ZERO.with_precision(precision);
        }

        let base = UBig::from_word(B);
        let num_digits = self.numerator.ilog(&base);
        let den_digits = self.denominator.ilog(&base);

        let shift;
        let (q, r) = if num_digits >= precision + den_digits {
            shift = 0;
            (&self.numerator).div_rem(&self.denominator)
        } else {
            shift = (precision + den_digits) - num_digits;
            if B == 2 {
                (&self.numerator << shift).div_rem(&self.denominator)
            } else {
                (&self.numerator * base.pow(shift)).div_rem(&self.denominator)
            }
        };
        let rounded = if r.is_zero() {
            Approximation::Exact(q)
        } else {
            let adjust = R::round_ratio(&q, r, self.denominator.as_ibig());
            Approximation::Inexact(q + adjust, adjust)
        };

        let context = Context::<R>::new(precision);
        rounded
            .and_then(|n| context.convert_int(n))
            .map(|f| f >> (shift as isize))
    }
}

impl RBig {
    /// Convert the rational number to a [FBig] with guaranteed correct rounding.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_base::Approximation::*;
    /// # use dashu_ratio::RBig;
    /// use dashu_float::{DBig, round::Rounding::*};
    ///
    /// assert_eq!(RBig::ONE.to_float(1), Exact(DBig::ONE));
    /// assert_eq!(RBig::from(1000).to_float(4), Exact(DBig::from(1000)));
    /// assert_eq!(RBig::from_parts(1000.into(), 6u8.into()).to_float(4),
    ///     Inexact(DBig::from_parts(1667.into(), -1), AddOne));
    /// ```
    #[inline]
    pub fn to_float<R: Round, const B: Word>(&self, precision: usize) -> Rounded<FBig<R, B>> {
        self.0.to_float(precision)
    }

    /// # Examples
    ///
    /// ```
    /// # use dashu_base::ParseError;
    /// # use dashu_ratio::RBig;
    /// use dashu_float::DBig;
    ///
    /// let f = DBig::from_str_native("4.00")? / DBig::from_str_native("3.00")?;
    /// let r = RBig::from_str_radix("4/3", 10)?;
    /// assert_eq!(RBig::simplest_from_float(&f), Some(r));
    /// assert_eq!(RBig::simplest_from_float(&DBig::INFINITY), None);
    ///
    /// # Ok::<(), ParseError>(())
    /// ```
    pub fn simplest_from_float<R: ErrorBounds, const B: Word>(f: &FBig<R, B>) -> Option<Self> {
        if f.repr().is_infinite() {
            return None;
        } else if f.repr().is_zero() {
            return Some(Self::ZERO);
        }

        // calculate lower and upper bound
        let (l, r, incl_l, incl_r) = R::error_bounds(f);
        let lb = f - l.with_precision(f.precision() + 1).unwrap();
        let rb = f + r.with_precision(f.precision() + 1).unwrap();

        // select the simplest in this range
        let left = Self::try_from(lb).unwrap();
        let right = Self::try_from(rb).unwrap();
        let mut simplest = Self::simplest_in(left.clone(), right.clone());
        if incl_l && left.is_simpler_than(&simplest) {
            simplest = left;
        }
        if incl_r && right.is_simpler_than(&simplest) {
            simplest = right;
        }
        Some(simplest)
    }
}

impl Relaxed {
    /// Convert the rational number to a [FBig] with guaranteed correct rounding.
    ///
    /// See [RBig::to_float] for details.
    #[inline]
    pub fn to_float<R: Round, const B: Word>(&self, precision: usize) -> Rounded<FBig<R, B>> {
        self.0.to_float(precision)
    }
}